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Abstract. In this paper, we consider the solubility of the Pellian equation

x2 − (d2 + 1)y2 = −m,

in cases d = nk,m = n2l−1, k, l are positive integers, n is a composite positive integer and
d = pq, m = pq2, p, q are primes.

We use obtained results to prove results on extensibility of some D(−1)-pairs to quadruples

in the ring Z[
√
−t], with t > 0.

1. Introduction

Suppose that k, l, n are positive integers. In [7], for n = p, where p is an odd prime, it was
considered the solubility of equation

x2 − (n2k + 1)y2 = −n2l−1 (1.1)

in positive integers. There is shown that for 0 < l ≤ k equation (1.1) is not solvable in positive
integers x and y. In Section 2, we investigate the solubility in integers of equation (1.1) with
composite n. In Theorem 2.1, we give generalized result concerning equation of this type with
right-hand side equals to −m with some positive integer m. That result will generate results about
solubility of our initial equation (1.1) (see Corollary 2.1.1 and its consequences). Moreover, we
observe equation

x2 − (p2q2 + 1)y2 = −pq2, (1.2)

where p, q are primes. In Theorem 2.3, we completely solve the problem of its solubility in integers.
A Diophantine m-tuple with the property D(−1) or just a D(−1)-m-tuple in a commutative

ring R is a set of m non-zero elements of R such that ab− 1 is a square in R for any two distinct
elements a, b in R. Extendibility of D(−1)-m-tuples is a topic which is actively researched (for
example, see [1, 2, 3, 6, 11, 10, 14, 15, 16]). In Section 3, we consider the existence of some D(−1)-
quadruples in rings of integers of the imaginary quadratic fields. To prove our main result (see
Theorem 3.1) we apply the results of Section 2.

2. Pellian equations

At the beginning of this section, we will discuss solubility of the Pellian equation which is closely
related to equation (1.1).

Theorem 2.1. Let d and m be positive integers and (x∗, y∗) a fundamental solution of equation

x2 − (d2 + 1)y2 = −m. (2.1)

Then

0 < y∗ <
m+ 1

2d
, |x∗| < m+ 1

2
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2 MIRELA JUKIĆ BOKUN AND IVAN SOLDO

and, in the case of m is a square,

y∗ =
√
m, |x∗| = d

√
m.

Proof. One can conclude that

x0 = 2d2 + 1,

y0 = 2d,

is the fundamental solution of the Pell equation

x2 − (d2 + 1)y2 = 1.

Thus, by following the Nagell’s approach (see [12]) for the fundamental solution (x∗, y∗) of equation
(2.1) we obtain

0 < y∗ ≤
√
m.

It implies

|x∗| ≤ dy∗.

Suppose that y∗ <
√
m. Then |x∗| < dy∗.

On the other hand,

x∗2 = (dy∗)2 + y∗2 −m > (dy∗)2 −m = (dy∗ − 1)2 + 2dy∗ −m− 1.

For y∗ ≥ m+1
2d , we obtain

|x∗| > dy∗ − 1.

Therefore, we have

dy∗ − 1 < |x∗| < dy∗,

which is not possible. This implies

0 < y∗ <
m+ 1

2d
, |x∗| < m+ 1

2

and, in the case of m is a square,

|x∗| = d
√
m, y∗ =

√
m.

�

As a direct consequence of Theorem 2.1 we get the next result:

Corollary 2.1.1. Let d and m be positive integers. If d ≥ m, then equation (2.1) has a solution
in integers x and y only in the case of m is a square.

Proof. Theorem 2.1 imples that 0 < y∗ < 1 or y∗ =
√
m, and m has to be a square. �

By Corollary 2.1.1, we are able to conclude that for k ≥ 2l − 1 equation (1.1) has an integer
solution only in the case of n is a square and its fundamental solution is given by

y∗ = nl−1
√
n,

|x∗| = nk+l−1
√
n.

(2.2)

This yields that equation (1.1) is solvable for a composite n. Like we will emphasize in the next
remark, this is not the only case where the solution of equation (1.1) exists.

Remark 1.

(i) If n is a square, then (2.2) is the solution of equation (1.1) for an arbitrary positive integers
k, l.
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(ii) Let 0 ≤ k < 2l − 1. If k is even, then

x =
1

2

√
2n2l−k−1(nk − 1),

y =
1

2

√
2n2l−k−1,

is the solution of equation (1.1) in the case of n is a twice square.
(iii) Also, the solution of equation (1.1) exists in some other cases. For example, suppose that

k < l and n = 2p with an odd prime p. If u is a positive integer and p is of the form
4u + 1, then there exists the solution for (n, k, l) = (34, 2, 16), which yields the existence
of the solution for all l > 16. Similarly, for p of the form 4u + 3, the solution exists for
(n, k, l) = (6, 2, 3) and consequently for all l > 3.

Remark 2. Our conjecture is that in the case of k < l and n = p, where p is an odd prime,
equation (1.1) is not solvable in integers x and y.

We will also emphasise next consequence of Theorem 2.1.

Corollary 2.1.2. The fundamental solution of equation

x2 − (d2 + 1)y2 = −2d

is given by

|x∗| = d− 1, y∗ = 1.

Proof. If m = 2d, then from Theorem 2.1 we get 0 < y∗ < 2. It is easy to see that y∗ = 1 implies
|x∗| = d− 1. �

Further, we will consider equation (1.2). To prove our result we will use the following results
on Diophantine approximations of a real number and convergents of continued fraction expansion
of irrational number.

Theorem 2.2 ([17, 4, Theorem 1]). Let α be a real number and let a and b be coprime nonzero
integers, satisfying the inequality ∣∣∣α− a

b

∣∣∣ < k

b2
,

where k is a positive real number. Then (a, b) = (rpm+1 ± upm, rqm+1 ± uqm), for some m ≥ −1
and nonnegative integers r and u such that ru < 2k. Term pm/qm denote convergent of continued
fraction expansion of α.

If α = s0+
√
d

t0
is a quadratic irrational, then the simple continued fraction expansion of α is

periodic and that expansion can be obtained by using the following algorithm (see [13, Chapter
7.7]):

an =

⌊
sn +

√
d

tn

⌋
, sn+1 = antn − sn, tn+1 =

d− s2n+1

tn
, for n ≥ 0. (2.3)

If (sj , tj) = (sk, tk) for j < k, then

α = [a0, . . . , aj−1, aj , . . . , ak−1].

Also, useful will be the following lemma:
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Lemma 2.1 ([5, Lemma 2]). Let αβ be a positive integer which is not a perfect square, and let

pn/qn denotes the n-th convergent of continued fraction expansion of
√

α
β . Let the sequences (sn)

and (tn) be defined by (2.3) for the quadratic irrational
√
αβ
β . Then

α(rqn+1 + uqn)
2 − β(rpn+1 + upn)

2 = (−1)n(u2tn+1 + 2rusn+2 − r2tn+2),

for any real numbers r, u.

Theorem 2.3. Let p, q be primes. The equation (1.2) has no integer solutions except in cases
p = q = 2 and p is odd, q = 2.

Proof. By Corollary 2.1.2, for d = 4 and d = 2p, we conclude the solubility of equation (1.2) in
cases p = q = 2 and p is odd, q = 2, respectively.

In what follows, we will use the similar approach as in [7].
It is easy to see that x, y ̸= 0. Thus we will consider the solubility of (1.2) in positive integers.

The possibility (x, y) > 1 implies that (x, y) = q and then equation (1.2) generate equation of the
form

x2 − (p2q2 + 1)y2 = −p

which, according to Corollary 2.1.1, has no solution. So we conclude that (x, y) = 1.∣∣∣∣√p2q2 + 1− x

y

∣∣∣∣ = pq2

y2

∣∣∣∣√p2q2 + 1 +
x

y

∣∣∣∣−1

. (2.4)

The idea is to bound last term of the right-hand side in (2.4) and then apply Theorem 2.2. We
will determine y such that inequality√

p2q2 + 1 +
x

y
> 2pq (2.5)

holds. This inequality in combination with (1.2) implies

p2q2 + 1− pq2

y2
> (2pq −

√
p2q2 + 1)2,

i.e.,
q

y2
< 4(

√
p2q2 + 1− pq). (2.6)

For x ≥ 1 inequality
√
x2 + 1− x > 1

4x holds and it implies

1

pq
< 4(

√
p2q2 + 1− pq).

Therefore, for

q

y2
<

1

pq
,

i.e., y > q
√
p inequality (2.6), but also inequality (2.5) holds. Combining that with (2.4) we obtain∣∣∣∣√p2q2 + 1− x

y

∣∣∣∣ < q

2y2
.

According to Theorem 2.2 we have

(x, y) = (rpm+1 ± upm, rqm+1 ± uqm), (2.7)

for some m ≥ −1 and nonnegative integers r and u such that

ru < q. (2.8)
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Terms pm/qm are convergents of the continued fraction expansion of
√
p2q2 + 1. Since

√
p2q2 + 1 =

[pq, 2pq], by Lemma 2.1, we have

(p2q2 + 1)(rqn+1 ± uqn)
2 − (rpn+1 ± upn)

2 = ±(u2t1 ± 2rus2 − r2t2). (2.9)

Since

s2 = s3 = pq, t1 = t2 = t3 = 1.

from (1.2), (2.7) and (2.9) we get equations of the form

u2 − r2 ± 2rupq = pq2, (2.10)

and have to consider their solubility.
It is easy to see that cases r = 0 or u = 0 or u = r are not possible. Suppose that 0 ̸= r ̸= u ̸= 0.

We will base our observation on the inequality ur ≥ u+ r − 1 and inequality (2.8), i.e., ur < q.
From (2.10) it follows that pq|u2 − r2.
If pq divide u− r or u+ r then u+ r ≥ pq implies ur > q which is not possible. Suppose that

pq does not divide u− r or u+ r. Then p|u− r, q|u+ r or p|u+ r, q|u− r. In each case it follows
that u+ r ≥ q and we get

q > ur ≥ u+ r − 1 ≥ q − 1.

So, the only possibility is ur = q− 1, u+ r = q. This imply that u1 = q− 1, r1 = 1 or u2 = 1, r2 =
q − 1. These cases in combination with (2.10) implies that q = 2 and p = ±1 for ”+” sign and
q = 2+2p

1+3p or q = 2p−2
3p−1 for ”-” sign. Niether of these cases are not possible.

We conclude that all positive solutions of equation (1.2) must satsify y < q
√
p. Since the set of

positive solutions of soluble Pellian equation is unbounded this is a contradiction. In that way we
complete the proof of the theorem.

�

Let us mention that in combination with Theorem 2.1 and it’s corollary, the above result will
be the crucial one to finish the proof of the main result of the next section.

3. D(−1)-quadruples in the ring Z[
√
−t], with t > 0

In this section, we present the results on extensibility of certain Diophantine pairs to quadruples
in the ring Z[

√
−t], t > 0.

By [16, Theorem 2.2] and its proof it follows:

Lemma 3.1. If t > 0, b is a prime or twice prime or twice prime square and {1, b, c} is a D(−1)-
triple in the ring Z[

√
−t], then c ∈ Z. Moreover, for every t there exists c > 0, while the case of

c < 0 is possible if and only if t|b− 1 and equation

x2 − by2 =
1− b

t

has an integer solution.

We consider the extendibility of a D(−1)-pair {1, b}, where b is a prime, twice prime and twice
prime squared in the ring Z[

√
−t] with t > 0. Since b − 1 has to be a square, we will observe the

case of b− 1 = P 2Q2, with different primes P and Q.
To prove our results we recall the following lemmas:

Lemma 3.2 ([7, Proposition 2]). Let m,n > 0 and b = n2 + 1. If m|n and t ∈ {1,m2, n2}, then
there exist infinitely many D(−1)-quadruples of the form {1, b,−c, d}, c, d > 0 in Z[

√
−t].
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Lemma 3.3 ([8, Corollary 1.3]). Let r be a positive integer and let b = r2 + 1. Assume that one
of the following holds for any odd prime p and a positive integer k:

b = p, b = 2pk, r = pk, r = 2pk.

Then the system of Diophantine equations

y2 − bx2 = r2,

z2 − cx2 = s2

has only the trivial solutions (x, y, z) = (0,±r,±s), where s is such that (t, s) is a positive solution
of t2 − bs2 = r2 and c = s2 + 1. Furthermore, the D(−1)-pair {1, b} cannot be extended to a
D(−1)-quadruple.

First, suppose that b is a prime. It is obvious that b ̸= 2. If P = Q = 2, than b = 17. In [15], we
have already considered the extensions of the D(−1)-pair {1, 17} in the ring Z[

√
−t] with t > 0.

Thus, b is an odd prime of the form b = P 2Q2 + 1, with Q = 2 and some odd prime P .
Next, we will observe the case of b = 2p or b = 2p2, with prime p, where b = P 2Q2 +1 and P,Q

are different odd primes.
We are able to prove the next theorem:

Theorem 3.1. Set

S1 =
{
b = P 2Q2 + 1 : Q = 2 and b, P are odd primes

}
,

S2 =
{
b = P 2Q2 + 1 : P,Q are different odd primes and b = 2p or b = 2p2

with prime p} .

(a) Let b ∈ S1 ∪ S2.

(i) If t ∈ {1, P 2, Q2, P 2Q2}, then there exist infinitely many D(−1)-quadruples of the form
{1, b,−c, d}, c, d > 0 in Z[

√
−t].

(ii) If t - P 2Q2, then there does not exists a D(−1)-quadruple of the form {1, b, c, d} in
Z[
√
−t], t > 0.

(b) If b ∈ S1 and t ∈ {2, 2P, 4P, 2P 2}, then there does not exists a D(−1)-quadruple of the form
{1, b, c, d} in Z[

√
−t].

(c) Let b ∈ S2. If t ∈ {P,Q, PQ,PQ2, P 2Q}, then there does not exists a D(−1)-quadruple of the
form {1, b, c, d} in Z[

√
−t].

Proof. (a):
(i) It follows from Lemma 3.2.
(ii) Let t - P 2Q2. If there exists a D(−1)-quadruple of the form {1, b, c, d} in Z[

√
−t], then from

Lemma 3.1 we have c, d > 0. This leads to the contradiction with Lemma 3.3. Thus we obtain
that at least one of the product of any two distinct elements from {1, b, c, d} decreased by 1 is a
square in Z[

√
−t] \ Z. This contradicts with c, d ∈ N.

(b): Let b ∈ S1 and t ∈ {2, 2P, 4P, 2P 2}. From Lemma 3.1 we have to consider the solubility of
equations

x2 − (4P 2 + 1)y2 = −2P 2, (3.1)

x2 − (4P 2 + 1)y2 = −2P, (3.2)

x2 − (4P 2 + 1)y2 = −P, (3.3)

x2 − (4P 2 + 1)y2 = −2. (3.4)
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Equations (3.1) and (3.4) have no solutions modulo 4. By Corollary 2.1.1, equations (3.2), (3.3)
are solvable only if their right-hand side (2P , P , respectively) is a square, which is not possible.
This implies that c, d > 0 and the proof follows in the same way as in the part (ii).

(c): Let b ∈ S2 and t ∈ {P,Q, PQ,PQ2, P 2Q}. Since Z[P
√
−Q] is a subring of Z[

√
−Q], and

by the symmetry of P and Q, from Lemma 3.1 we obtain equations

x2 − (P 2Q2 + 1)y2 = −PQ, (3.5)

x2 − (P 2Q2 + 1)y2 = −PQ2. (3.6)

By Theorem 2.3 equation (3.6) is not solvable. By Corollary 2.1.1, equation (3.5) is solvable only
in the case of PQ is a square. That is not possible. Now, the proof follows in the same way as
previous cases. �

Remark 3. One can note that in the case of b ∈ S1 there also appear the possibility t = P . This
leads us to observe equation

x2 − (4P 2 + 1)y2 = −4P. (3.7)

According to Corollary 2.1.2, the only fundamental solutions of (3.7) are (±(2P − 1), 1). So, all
solutions of (3.7) are given by

x+ y
√

4P 2 + 1 = (±(2P − 1) +
√

4P 2 + 1)(8P 2 + 1 + 4P
√
4P 2 + 1)n,

where n is a non-negative integer. Now, if we consider the existence of the D(−1)-quadruple
{1, 4P 2+1, c, d} in the ring Z[

√
−P ], then according to Lemma 3.1 it follows that c = 1−Py2 and

d ∈ Z (i.e., d can be positive or negative integer). Thus in both cases we have to solve the systems
of simultaneous pellian equations depending on P and corresponding solution y. In [9], we solved
the case of y = 1, i.e., proved that the D(−1)-triple {1, 4P 2 + 1, 1 − P} cannot be extended to a
D(−1)-quadruple in the ring Z[

√
−P ]. The general case may be considered in some future work.
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